BitVisor Summit 7

## CTFVisor: BitVisorによるCTF作問・出題支援

松原 克弥 源 啓多 中田 裕貴 公立はこだて未来大学

2018年11月28日

## 背景: 実践的情報教育

- 大学等への実践的情報教育の導入が進んでいる→現実のシステムと直結した内容を学ぶ
  - ex.) プロジェクト学習 (PBL)



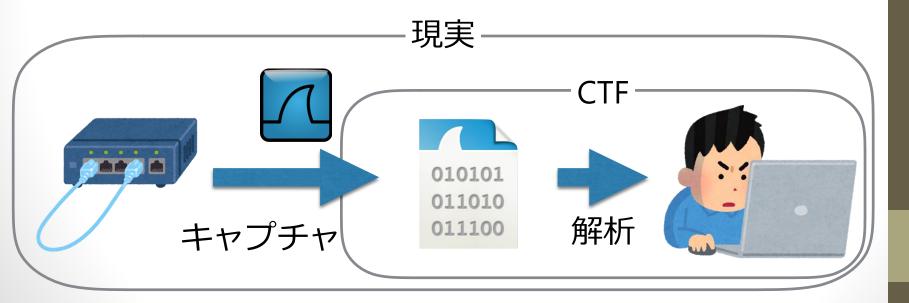
両方の実践的教育を通して、 高度IT人材を育成

- 学外では、ハッカソンやハンズオン、LT(Lightning Talk) 大会、CTFなどの IT 技術の向上を目的とした教育系イベントが開催が増加
  - →現実のシステムを用いて学ぶ

# Catch The Flag (CTF)

- IT 技術に関する問題に対して適切な形で対処することで, その結果得られる得点で勝敗を決める競技
  - Attack & Defense 脆弱性のあるシステムを攻撃から防御しつつ, 他チームのシステムの脆弱性を突いて情報を読み出す攻防戦形式
  - <u>Jeopardy</u> ファイルや画像,システム入出力データから 指定された情報 (フラグ) を読み出す早さを競う<u>クイズ形式</u>

暗号や符号理論,信号処理,画像処理やネットワーク技術, プログラミング言語,データベース,ファイルシステムといった OS 技術などの計算機科学に関する実践的な知識が求められる


- 高度IT人材の育成手段として**産官学が注目** 
  - 特にセキュリティ分野

# Jeopardy の出題形式

| 形式                        | 説明                             | 対応する教育分野の例             |
|---------------------------|--------------------------------|------------------------|
| Pwn                       | サーバ上で動くプログラムの脆弱<br>性を攻撃して権限を奪取 | セキュリティ, OS, DB, etc.   |
| Reversing                 | プログラムバイナリを読み解いて<br>動作を理解       | OS, コンパイラ, プログ<br>ラミング |
| Web                       | Web サービスの脆弱性を発見                | 情報セキュリティ, ネッ<br>トワーク   |
| Crypto                    | 暗号文を解読                         | 暗号処理                   |
| Network                   | ネットワークパケットを読み解く                | ネットワーク, OS             |
| Forensics                 | デバイス入出力 RAW データを解析             | 計算機アーキテクチャ,<br>OS      |
| Stego                     | 画像データや音声データを解析                 | 画像処理, 音声処理             |
| Recon                     | SNS等のインターネット上のデー<br>夕を探索       | ネットワーク                 |
| PPC 競技プログラミングの課題を順に<br>回答 |                                | プログラミング                |

## 課題

- 教育機関や企業で手軽に開催するのは難しい
  - ・特殊なツールへの精通(Scapy, USBPcap...)
- 実践的な問題を作成しにくいジャンルがある
  - ログやダンプを渡して解析をさせるだけになりやすい
    - 例: ネットワークパケットの解析問題



## Scapy

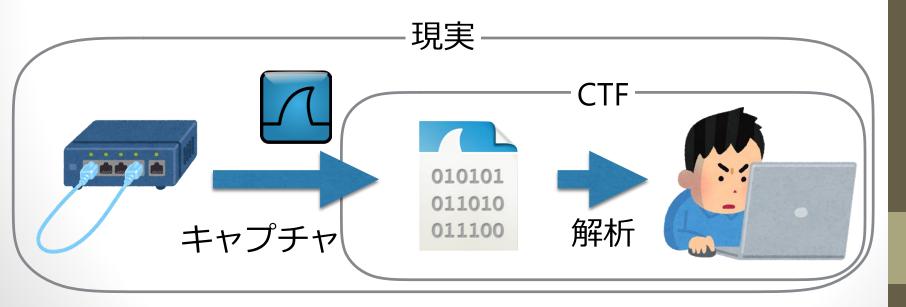
- Pythonで書かれた対話型のパケット作成ツール
  - http://www.secdev.org/projects/scapy/

#### Scapy

- <u>Security Power Tools</u> was out in August 2007. I wrote a complete chapter on <u>Scapy</u>



#### **About Scapy**


#### What is Scapy

Scapy is a powerful interactive packet manipulation program. It is able to forge or decode packets of a

```
$ sudo scapy
Welcome to Scapy (2.2.0)
                                       TCPヘッダのコントロー
>>> ip = IP(dst='192.168.0.1', id=1000)
>>> tcp = TCP(dport=888, flags='FSRPAU')
                                       ルフラグをすべて1にし
>>> send(ip/tcp)
                                         たパケットの作成
Sent 1 packets.
```

### 課題

- 教育機関や企業で手軽に開催するのは難しい
  - 特殊なツールへの精通(Scapy, USBPcap...)
- 実践的な問題を作成しにくいジャンルがある
  - ログやダンプを渡して解析をさせるだけになりやすい
    - 例: ネットワークパケットの解析問題

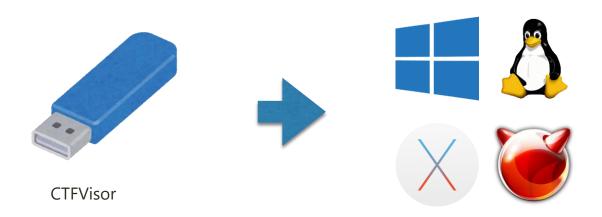


# Jeopardy の出題形式

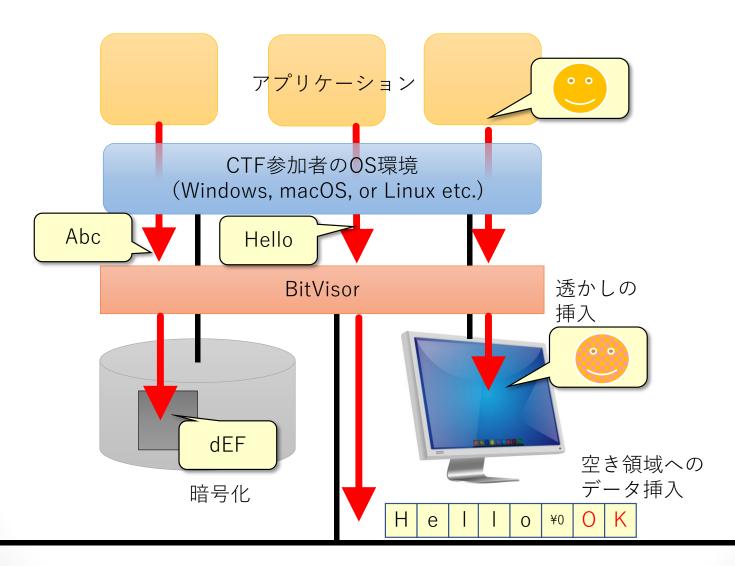
| 形式                     | 説明                             | 対応する教育分野の例             |  |  |
|------------------------|--------------------------------|------------------------|--|--|
| Pwn                    | サーバ上で動くプログラムの脆弱<br>性を攻撃して権限を奪取 | セキュリティ, OS, DB, etc.   |  |  |
| Reversing              | プログラムバイナリを読み解いて<br>動作を理解       | OS, コンパイラ, プログ<br>ラミング |  |  |
| Web ログやダンプでの出題が多い イ,ネッ |                                |                        |  |  |
| Crypto                 | 暗号又を解読 /                       | 暗号処埋                   |  |  |
| Network                | ネットワークパケットを読み解く                | ネットワーク, OS             |  |  |
| Forensics              | デバイス入出力 RAW データを解析             | 計算機アーキテクチャ,<br>OS      |  |  |
| Stego                  | 画像データや音声データを解析                 | 画像処理, 音声処理             |  |  |
| Recor                  | ログやダンプではない                     | ′                      |  |  |
| PPC                    | 画像や音声も静的なファイルとして<br>渡される事が多い   |                        |  |  |

## 目的と提案

#### 目的


- ① 手軽にCTFの作問を行えるようにする
- ② より実践的な問題の作成
  - 特にJeopardyにおけるNetwork, For, Stegoの3ジャンル

### 提案


- ① 複数のジャンルを作問できる,統一的なツールの作成
- ② 作問・出題に仮想化技術を活用して,実環境での体験を提供
  - ▶ OSとハードウェアの間で動作し,デバイス入出力を改変
  - ▶ 競技者の使用しているOSに依存しない

## 実現手法

- ▶ BitVisorをベースにしたCTF作問支援ソフトウェア CTFVisor を開発
  - ▶ USBから起動できる形で競技者に配布し,競技者のマシンで 直接動作
    - 仮想化技術を用いるため、競技者の使用しているOSに 依存しない
  - ▶ 特定のデバイス入出力を改変しFlag挿入
    - 競技者は普段と違う挙動を見つけ,調査する



## CTFVisorの機能例



# 作問例1: TCPへッダへのフラグ挿入

ethernet

ヘッダ

#### (従来の方法)

- 1. Scapyをインストール
- 2. TCPパケットを作成
- 3. 実際に送信
- 4. WireSharkで送信パケットをキャプチャ
- 5. pcapファイルを保存
- → pcapファイルをCTF参加者へ配布

| ソースポート番号 |    | 卜番号        | 宛先ポート番号    |  |  |
|----------|----|------------|------------|--|--|
| シーケンス番号  |    |            |            |  |  |
| ACK番号    |    |            |            |  |  |
| off      | 予約 | コントロー ルフラグ | ウィンドウサイズ   |  |  |
| チェックサム   |    | サム         | Urgentポインタ |  |  |

IPヘッダ

TCPヘッダ

# 13

## 作問例 1: CTFVisorによる TCPへッダへのフラグ挿入

- NIC(ネットワークデバイス)へのDMA転送をフックし、 特定のパケットにFlagを挿入
- TCPヘッダにある3bitの予約領域を利用する

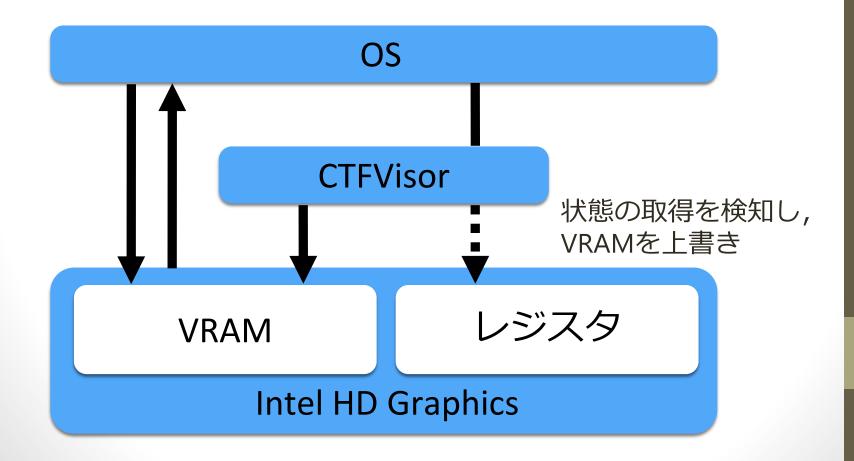
```
59990 → 80 [SYN, Reserved] Seq=157145027 Win=29200 Len=0 MSS=1460 SACK_...
59990 → 80 [ACK, Reserved] Seq=157145028 Ack=1632986782 Win=29312 Len=0...
GET / HTTP/1.1
59990 → 80 [ACK, Reserved] Seq=157145103 Ack=1632988358 Win=32384 Len=0...
59990 → 80 [FIN, ACK, Reserved] Seq=157145103 Ack=1632988358 Win=32384 ...
59990 → 80 [ACK, Reserved] Seq=157145104 Ack=1632988359 Win=32384 Len=0...
```

```
Flags: 0xe02 (SYN, Reserved)
  111. .... = Reserved: Set
   ...0 .... e Nonce: Not set
  .... 0... = Congestion Window Reduced (CWR): Not set
   .... .0.. .... = ECN-Echo: Not set
   .... ..0. .... = Urgent: Not set
```

## 作問例2:

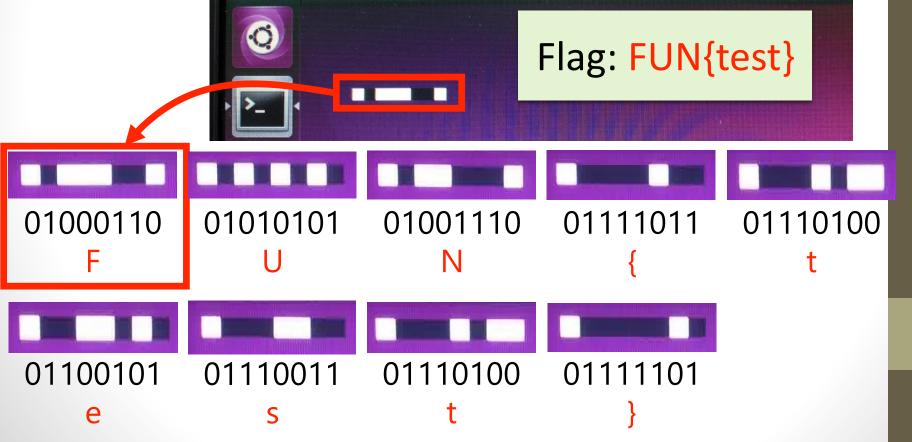
## ディスクI/Oへのフラグ挿入

- OSからアクセスされないようなディスク領域への 読み出しをフックして、偽のデータとしてFlagを返す
- ブートセクタなどのOSから読み出されない領域を利用


ブート セクタ パーティショ ン1

パーティション2

パーティション3


# 作問例3: 画面描画へのフラグ挿入

• OSが描く画面に重ね合わせ



## 気がつきましたか?

表示しているのはASCIIコードを2進数表記して 「1->黒, 0->緑」に対応させた文字列



# 検討:高水準プログラミング言語 によるデバイス入出力の加工

- BitVisorへのmrubyの組み込み
  - BitVisor Summit 6で紹介

BitVisor Summit 6

Implementation and Current Status of 'mruby in BitVisor'

中田 裕貴 松原 克弥 公立はこだて未来大学

2017年12月5日

# mrubyによる作問記述

```
# ディスク読み出し改変の設定

def network(buf, cylinder, head, sector)
  flag = "fun{test2}"
  if buf.read? && cylinder.zero? && head.zero? &&
sector.eql(1)
  flag
  end
  buf
end
```

# mrubyによる作問記述 (contd.)

```
# ネットワークパケット改変の設定

def network_bits

flag = "fun{test2}"

# 次の3ビットを返すジェネレータ (略)

end

def network(buf, is_recv)

if !is_recv && buf.tcp?

buf.reserved = network_bits.next

end

buf

end
```

#### # 画面出力改変の設定

```
def display(buf)
  flag = "fun{test}"
  # LSBを用いたフレームバッファへのフラグ挿入
  lsb(buf, flag)
end
```

## まとめと今後の課題

#### まとめ

軽量仮想マシンモニタである「BitVisor」を用いて, CTF作問支援ソフトウェア「CTFVisor」を開発

- ツールの統一による作問の難しさの軽減
- 動的にデバイス入出力を書き換え、実践的な問題に

#### 今後の課題

- mrubyによる作問記述
- USBなどの他デバイス入出力への対応
- CTF競技開催による評価
  - 作問者:作問しやすさ、問題内容の対応範囲
  - CTF参加者:難易度、問題のおもしろさ、学習効果