
NVMe Driver for BitVisor
2017-12-05 @ BitVisor Summit 6

Ake Koomsin

Agenda

 NVMe overview

 NVMe driver implementation

 Using NVMe driver

1Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Agenda

 NVMe overview

 NVMe driver implementation

 Using NVMe driver

2Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

NVMe overview

3Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Admin
Submission

Queue

Admin
Completion

Queue

I/O
Submission

Queue 1

I/O
Completion

Queue 1

I/O
Submission

Queue 2

I/O
Completion

Queue 2

Controller

Core 1Core 0

NVMe command processing

4Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Submission
Queue

Completion
Queue

Controller
3) Fetch and executeSubmission Queue

Tail Doorbell
Completion Queue

Head Doorbell

1) Put commands
to the queue

2) Write the
doorbell register

4) Put completion entry
to the queue

5) Generate interrupt

7) Write the
doorbell register

6) Process completion entry

NVMe queue arbitration

5Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Admin
Submission

Queue

I/O
Submission

Queue 1

I/O
Submission

Queue 2

Controller

 Select one queue at a
time
– Round robin

– Weighted round robin

 Fetch commands as many
as the controller can
– Execute commands in

parallel

NVMe initialization (1)

 Configure Admin Queue
– Admin Submission Queue Base Address (ASQ) register

– Admin Completion Queue Base Address (ACQ) register

– Admin Queue Attribute (AQA) register

• Number of entries in ASQ and ACQ

 Configure Controller Configuration (CC) register
– Arbitration mechanism

– Memory page size

– Submission/Completion queue entry size

 Start the controller by setting Enable bit in CC to 1

 Wait for readiness

6Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

NVMe initialization (2)

 Submit Identify commands
– Controller configuration

– Each namespace information

 Determine number of queues the controller support to
using Set Feature commands

 Configure interrupts (MSI/MSI-X)

 Create completion queues by Create I/O Completion
Queue commands

 Create completion queues by Create I/O Submission
Queue commands

 Ready to go!

7Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Agenda

 NVMe overview

 NVMe driver implementation

 Using NVMe driver

8Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Implementation concept (1)

9Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Submission
Queue

Completion
Queue

Controller

Guest BitVisor Hardware

Implementation concept (2)

10Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Submission
Queue

Completion
Queue

Guest BitVisor
 Intercept doorbell

writes for submission
queues

 Use external interrupts
as the event source for
copying completion
entries back

NVMe driver implementation (1)

 Intercept Admin Queue related registers
– Create shadow Admin Queues

– Create Admin “Request Hub”

 Configure the driver based on value written to
the CC register

 After the guest starts the controller, BitVisor submits
Identify commands
– Number of namespaces

– Each namespace’s LBA size and number of LBAs

– Additional initialization

– Note that all guest commands are delayed until we retrieve all
information we need

11Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

NVMe driver implementation (2)

 Intercept Set Feature commands for number of
I/O queues the guest is going to use

 Intercept Create I/O Completion Queue commands to
create shadow Completion Queues

 Intercept Create I/O Submission Queue commands to
create shadow Submission Queues
– Create I/O “Request Hubs”

12Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

NVMe driver implementation (3)

 Request Hubs
– Multiplex requests from both BitVisor and the guest

– Currently in time sharing manner

• Either host requests or guest requests at a time

• Because of some controller problem

13Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Buffer shadowing (PRP format)

14Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Read/Write
command

Buffer pointers

Buffer
page

Buffer
page

Buffer
page

Buffer
page

Buffer
page

Buffer
page

Buffer
page

1

2

3

NVMe driver implementation (4)

15Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Buffer
page

Buffer
page

Buffer
page

Buffer
page

Buffer
page

Page array

Actual buffer  Shadow buffer
– Actual buffer + Page array

– Copy page by page

• Don’t know whether
memory in the guest is
continuous or not

 Currently, maximum
number of pages is 511
– Specification allows > 511

pages, we are going to have a
list of page array

– No OS uses more than 511
pages, don’t know how to
test for correctness

Agenda

 NVMe overview

 NVMe driver implementation

 Using NVMe driver

16Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Using NVMe driver

 We provide functions to interact with the NVMe driver
– Read/Write NVMe drives

– Extending the driver

 Can be found in nvme_io.h

 Still experimental

17Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Using NVMe driver

 I/O descriptor

18Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

struct nvme_io_descriptor *

nvme_io_init_descriptor (struct nvme_host *host

u32 nsid,

u16 queue_id,

u64 lba_start,

u16 n_lbas);

u8

nvme_io_set_phys_buffers (struct nvme_host *host,

struct nvme_io_descriptor *io_desc,

phys_t *pagebuf_arr,

phys_t pagebuf_arr_phys,

u64 n_pages_accessed,

u64 first_page_offset);

Using NVMe driver

 Submitting I/O commands

19Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

u8

nvme_io_read_request (struct nvme_host *host,

struct nvme_io_descriptor *io_desc,

void (*callback) (struct nvme_host *host,

void *arg1,

void *arg2,

void *arg3),

void *arg1, void *arg2, void *arg3);

u8

nvme_io_write_request (struct nvme_host *host,

struct nvme_io_descriptor *io_desc,

void (*callback) (struct nvme_host *host,

void *arg1,

void *arg2,

void *arg3),

void *arg1, void *arg2, void *arg3);

Using NVMe driver

 Install an interceptor during starting up using
nvme_io_install_interceptor()if you need to
intercept commands submitted by the guest

20Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

struct nvme_io_interceptor {

void *interceptor;

u8 (*on_init) (void *interceptor);

void (*on_read) (void *interceptor, ...);

void (*on_write) (void *interceptor, ...);

u32 (*on_data_management) (void *interceptor, ...);

u8 (*can_stop) (void *interceptor);

};

Using NVMe driver

 interceptor

– The reference to your interceptor object

 on_init()

– For initialize your interceptor

– Get called when the guest is ready to submit I/O commands

 on_read()and on_write()

– Intercept read/write commands

 on_data_management()

– Intercept trim deallocation commands

 can_stop()

– Try to delay the controller stop event

21Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Using NVMe driver

 Some of utility functions

22Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

/* At the end of interceptor initialization */

void

nvme_io_start_fetching_g_reqs (struct nvme_host *host);

/* When intercepting a command */

void

nvme_io_pause_guest_request (struct nvme_request *g_req);

void

nvme_io_resume_guest_request (struct nvme_host *host,

struct nvme_request *g_req,

u8 trigger_submit);

/* When the original command is not needed*/

void

nvme_io_change_g_req_to_flush (struct nvme_request *g_req);

/* When accessing to the request buffer is necessary */

u8 *

nvme_io_req_buf (struct nvme_host *host,

struct nvme_request *g_req,

u64 lba_offset);

Summary

 How NVMe works in general

 How BitVisor NVMe driver intercepts guest’s commands

 How can you make use the the driver and extend it

23Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

24Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Thank you

