NVMe Driver for BitVisor

2017-12-05 @ BitVisor Summit 6

Ake Koomsin

Technology Consulting Company IGEL Co.,Ltd.

Agenda

B NVMe overview
B NVMe driver implementation
B Using NVMe driver

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Agenda

B NVMe overview

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

NVMe overview

Admin Admin /0 /0 /0 /0
Submission Completion [Submission Completion|Submission Completion
Queue Queue Queuel Queuel | Queue2 Queue?

Core O Core 1l
Controller

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved. 3

NVMe command processing

1) Put commands 4) Put completion entry

to the queue to the queue
Submission Completion
Queue Queue 6) Process completion entry
2) Write the L 5) Generate interrupt
doorbell register A
[I 7) Write the
I T I doorbell register
[[i
[[[
""""" r------"-"="""""°y~TTTTTTTTTTTTTTTTYCTTTTTTTTTATTTTTTTTT
\ 4 | \ 4
Submission Queue | 3) Fetch and execute Completion Queue
Tail Doorbell Controller Head Doorbell

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved. 4

NVMe queue arbitration

Admin /0 /0O B Select one queue at a
Submission Submission Submission time
Queue Queue 1 Queue 2 — Round robin

| | | | | | — Weighted round robin

B Fetch commands as many
as the controller can

— Execute commands in

T "

Controller

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved. 5

NVMe initialization (1)

B Configure Admin Queue
— Admin Submission Queue Base Address (ASQ) register
— Admin Completion Queue Base Address (ACQ) register
— Admin Queue Attribute (AQA) register

e Number of entries in ASQ and ACQ

B Configure Controller Configuration (CC) register
— Arbitration mechanism
— Memory page size
— Submission/Completion queue entry size

B Start the controller by setting Enable bitin CCto 1
B Wait for readiness

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

NVMe initialization (2)

B Submit Identify commands
— Controller configuration
— Each namespace information

B Determine number of queues the controller support to
using Set Feature commands

B Configure interrupts (MSI/MSI-X)

B Create completion queues by Create |/O Completion
Queue commands

B Create completion queues by Create |/O Submission
Queue commands

B Ready to go!

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Agenda

B NVMe driver implementation

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Implementation concept (1)

Guest

Submission
Queue

Completion
Queue

BitVisor

\\/

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Hardware

Controller

Implementation concept (2)

Guest

Submission
Queue

Completion
Queue

BitVisor

B [ntercept doorbell
writes for submission
queues

B Use external interrupts
as the event source for
copying completion
entries back

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved. 10

NVMe driver implementation (1)

B Intercept Admin Queue related registers
— Create shadow Admin Queues
— Create Admin “Request Hub”

B Configure the driver based on value written to
the CC register

B After the guest starts the controller, BitVisor submits
ldentify commands
— Number of namespaces
— Each namespace’s LBA size and number of LBAs
— Additional initialization

— Note that all guest commands are delayed until we retrieve all
information we need

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

11

NVMe driver implementation (2)

B Intercept Set Feature commands for number of
/O queues the guest is going to use

B Intercept Create I/O Completion Queue commands to
create shadow Completion Queues

B Intercept Create |/O Submission Queue commands to
create shadow Submission Queues
— Create I/O “Request Hubs”

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved. 12

NVMe driver implementation (3)

B Request Hubs

— Multiplex requests from both BitVisor and the guest

— Currently in time sharing manner
e Either host requests or guest requests at a time
e Because of some controller problem

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

13

Buffer shadowing (PRP format)

Buffer pointers

q , 0 > Buffer
Read/Write page
command
:
: — > | Buffer
' 5
>| Buffer
. page
|
| - Buffer
! Buffer pasge
page —> —> Buffer
? page
e | |_> Buffer
page

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved. 14

NVMe driver implementation (4)

Actual buffer B Shadow buffer

é _
Buffer Actual buffer + Page array
— Copy page by page
page
Page array —> | Buffer e Don’t know whether
Joe memory in the guest is
S Bp fi continuous or not
uffer .
page B Currently, maximum
—> | guffer number of pages is 511
page — Specification allows > 511
— | Buffer pages, we are going to have a
page list of page array

— No OS uses more than 511
pages, don’t know how to
test for correctness

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved. 15

Agenda

B Using NVMe driver

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

16

Using NVMe driver

B We provide functions to interact with the NVMe driver
— Read/Write NVMe drives
— Extending the driver

B Can be foundinnvme io.h
B Still experimental

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

17

Using NVMe driver

B |/O descriptor

struct nvme_ io_ descriptor *
nvme io init descriptor (struct nvme host *host
u32 nsid,
ul6é queue_id,
u64d lba start,
ulé n_lbas);

u8
nvme io set phys buffers (struct nvme_ host *host,
struct nvme_io descriptor *io_desc,
phys_t *pagebuf arr,
phys t pagebuf arr phys,
u64 n _pages_accessed,
ub4d first page_ offset);

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved. 18

Using NVMe driver '

B Submitting I/O commands

u8
nvme jio_read request (struct nvme host *host,
struct nvme_ io descriptor *io_desc,
void (*callback) (struct nvme_ host *host,
void *argl,
void *arg2,
void *arg3),
void *argl, void *arg2, void *arg3);

u8
nvme io write request (struct nvme host *host,
struct nvme_ io descriptor *io_desc,
void (*callback) (struct nvme_ host *host,
void *argl,
void *arg2,
void *arg3),
void *argl, void *arg2, void *arg3);

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved. 19

Using NVMe driver '

B [nstall an interceptor during starting up using
nvme io install interceptor()ifyou needto
intercept commands submitted by the guest

struct nvme io interceptor {

void *interceptor;

u8 (*on_init) (void *interceptor);

void (*on_read) (void *interceptor, ...);

void (*on _write) (void *interceptor, ...);

u32 (*on _data management) (void *interceptor, ...);

u8 (*can_stop) (void *interceptor) ;

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved. 20

Using NVMe driver

B interceptor
— The reference to your interceptor object
B on init()
— For initialize your interceptor
— Get called when the guest is ready to submit I/O commands
B on read()andon write()
— Intercept read/write commands
B on data management ()
— Intercept trim deallocation commands
B can stop()

— Try to delay the controller stop event

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

21

Using NVMe driver '

B Some of utility functions

/* At the end of interceptor initialization */
void
nvme io start fetching g reqgs (struct nvme host *host);
/* When intercepting a command */
void
nvme io pause_guest request (struct nvme_ request *g req);
void
nvme io resume_ guest request (struct nvme host *host,
struct nvme_ request *g req,
u8 trigger_ submit);
/* When the original command is not needed*/
void
nvme io change g req to_ flush (struct nvme request *g req);
/* When accessing to the request buffer is necessary */
u8 *
nvme io req buf (struct nvme host *host,
struct nvme_ request *g req,
u64d lba offset);

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Summary

B How NVMe works in general
B How BitVisor NVMe driver intercepts guest’s commands
B How can you make use the the driver and extend it

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

23

Thank you

Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

24

