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NVMe overview
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NVMe command processing
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NVMe queue arbitration
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NVMe initialization (1)

 Configure Admin Queue
– Admin Submission Queue Base Address (ASQ) register

– Admin Completion Queue Base Address (ACQ) register

– Admin Queue Attribute (AQA) register

• Number of entries in ASQ and ACQ

 Configure Controller Configuration (CC) register
– Arbitration mechanism

– Memory page size

– Submission/Completion queue entry size

 Start the controller by setting Enable bit in CC to 1

 Wait for readiness
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NVMe initialization (2)

 Submit Identify commands
– Controller configuration

– Each namespace information

 Determine number of queues the controller support to 
using Set Feature commands

 Configure interrupts (MSI/MSI-X)

 Create completion queues by Create I/O Completion 
Queue commands

 Create completion queues by Create I/O Submission 
Queue commands

 Ready to go!
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Implementation concept (1)
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Implementation concept (2)
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NVMe driver implementation (1)

 Intercept Admin Queue related registers
– Create shadow Admin Queues

– Create Admin “Request Hub”

 Configure the driver based on value written to
the CC register

 After the guest starts the controller, BitVisor submits 
Identify commands
– Number of namespaces

– Each namespace’s LBA size and number of LBAs

– Additional initialization

– Note that all guest commands are delayed until we retrieve all 
information we need
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NVMe driver implementation (2)

 Intercept Set Feature commands for number of 
I/O queues the guest is going to use

 Intercept Create I/O Completion Queue commands to 
create shadow Completion Queues

 Intercept Create I/O Submission Queue commands to 
create shadow Submission Queues
– Create I/O “Request Hubs”
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NVMe driver implementation (3)

 Request Hubs
– Multiplex requests from both BitVisor and the guest

– Currently in time sharing manner

• Either host requests or guest requests at a time

• Because of some controller problem
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Buffer shadowing (PRP format)

14Copyright© 2017 IGEL Co., Ltd. All Rights Reserved.

Read/Write
command

Buffer pointers

Buffer 
page

Buffer 
page

Buffer 
page

Buffer 
page

Buffer 
page

Buffer 
page

Buffer 
page

1

2

3



NVMe driver implementation (4)
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Using NVMe driver

 We provide functions to interact with the NVMe driver
– Read/Write NVMe drives

– Extending the driver

 Can be found in nvme_io.h

 Still experimental
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Using NVMe driver

 I/O descriptor
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struct nvme_io_descriptor *

nvme_io_init_descriptor (struct nvme_host *host

u32 nsid,

u16 queue_id,

u64 lba_start,

u16 n_lbas);

u8

nvme_io_set_phys_buffers (struct nvme_host *host,

struct nvme_io_descriptor *io_desc,

phys_t *pagebuf_arr,

phys_t pagebuf_arr_phys,

u64 n_pages_accessed,

u64 first_page_offset);



Using NVMe driver

 Submitting I/O commands
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u8

nvme_io_read_request (struct nvme_host *host,

struct nvme_io_descriptor *io_desc,

void (*callback) (struct nvme_host *host,

void *arg1,

void *arg2,

void *arg3),

void *arg1, void *arg2, void *arg3);

u8

nvme_io_write_request (struct nvme_host *host,

struct nvme_io_descriptor *io_desc,

void (*callback) (struct nvme_host *host,

void *arg1,

void *arg2,

void *arg3),

void *arg1, void *arg2, void *arg3);



Using NVMe driver

 Install an interceptor during starting up using
nvme_io_install_interceptor()if you need to 
intercept commands submitted by the guest
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struct nvme_io_interceptor {

void *interceptor;

u8 (*on_init) (void *interceptor);

void (*on_read) (void *interceptor, ...);

void (*on_write) (void *interceptor, ...);

u32 (*on_data_management) (void *interceptor, ...);

u8 (*can_stop) (void *interceptor);

};



Using NVMe driver

 interceptor

– The reference to your interceptor object

 on_init()

– For initialize your interceptor

– Get called when the guest is ready to submit I/O commands

 on_read()and on_write()

– Intercept read/write commands

 on_data_management()

– Intercept trim deallocation commands

 can_stop()

– Try to delay the controller stop event
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Using NVMe driver

 Some of utility functions
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/* At the end of interceptor initialization */

void

nvme_io_start_fetching_g_reqs (struct nvme_host *host);

/* When intercepting a command */

void

nvme_io_pause_guest_request (struct nvme_request *g_req);

void

nvme_io_resume_guest_request (struct nvme_host *host,

struct nvme_request *g_req,

u8 trigger_submit);

/* When the original command is not needed*/

void

nvme_io_change_g_req_to_flush (struct nvme_request *g_req);

/* When accessing to the request buffer is necessary */

u8 *

nvme_io_req_buf (struct nvme_host *host,

struct nvme_request *g_req,

u64 lba_offset);



Summary

 How NVMe works in general

 How BitVisor NVMe driver intercepts guest’s commands

 How can you make use the the driver and extend it
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Thank you


